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ABSTRACT 

Structures with multiple supports are subjected to spatially varying multicomponent seismic ground motions.  Multicomponent 

seismic ground motions along different orientations and at spatially separated sites are incoherent.  Such motions can be 

simulated using the spectral representation method for selected target evolutionary power spectral density functions, and 

coherency function.  If a single or multiple ground motion records near a structure of interest are available, they can be used as 

the conditional ground motion records to simulation the motions at the supports of the considered structure.  However, the 

existing procedure is computing time consuming, and could result in that the power spectral density function of the simulated 

ground motions differ from the target. These issues are explained and, a new procedure is proposed.  An application of a newly 

proposed procedure that overcomes these drawbacks is illustrated. 
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INTRODUCTION 

Linear and nonlinear time history analyses are often used to assess the response of structures and infrastructure systems 

subjected to seismic ground motions.  Although the ground motions are spatially varying, for simplicity and due to lack of 

records that match the configuration of the foundation or multiple supports of a structural system, uniform excitation is often 

considered for structures with multiple supports.  This is partly due to unavailability of the historical records that match the 

layout of the supports of multi-support structures.  The consideration of spatially varying ground motions for structures with 

multiple support and irregular shapes are discussed in many studies ([1-3] and references thereafter).  To overcome the lack of 

adequate historical records, the spatially varying ground motions at multiple supports may be obtained through numerical 

simulation. 

The simulation can be carried out using the spectral representation method (SRM) [4-6] for given target power density function 

(PSD) or evolutionary power spectral density function (EPSD) [1,7] and coherency functions [8-11].  In addition, one could 

use the historical records as the conditional records to simulate spatially varying ground motion records [12-15].  The 

conditional simulation uses the properties of joint probability distribution of a set of normal variates conditioned on values of 

another set of normal variates.  The conditional simulation is further investigated in [16,17].  These studies pointed out that the 

computation of the covariance matrix of the Fourier coefficients used to represent the ground motion time histories can be 

evaluated based on the fast Fourier transform (FFT) algorithm to reduce computing time.  

In all case, application of the existing algorithm may not converge due to the difficulty in inverting (conditioning) covariance 

matrix of the Fourier coefficients.  In the present study, we provide a new practical procedure by modifying the commonly 

used Fourier series representation of the nonstationary ground motions, using the PSD from the conditioning ground motions 

and truncating the first few terms in the series representation of the ground motions.  It is shown through a numerical example 

that the proposed modification overcomes the observed drawbacks.  The procedure is illustrated through a numerical example. 

CONDITIONAL SIMULATION OF NONSTATIONARY PROCESS 

Evolutionary spectral representation and conditional simulation 

Consider a vector of nonstationary process X(t) with component Xj(t), 1,...,j n= , where Xj(t) is a zero-mean nonstationary 

stochastic process admitting the evolutionary spectral representation [18], 
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and jk() is the coherency function.  The evolutionary PSD (EPSD) and crossed EPSD functions of Xj(t) and Xk(t) are given 

by, 
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where Sjj(t) denotes the EPSD function and Sjk(t) denotes the crossed EPSD function, the superscript * denote the complex 

conjugate.  The n×n EPSD matrix of X(t), S(,t), is defined with elements Sjk(,t).  The assessment of the EPSD was studied 

by several researchers [19,20]; the investigation of the coherency was given in [2,8-11,21]. 

Based on SRM, Xj(t) can be represented by [4], 

 ( )1

2

( ) cos sin
2

N
j

j jp p jp p

p

A
X t A t B t

=

= +  +   (4) 

where p = (2π/T)×(p-1), N = 1+u/(2π/T), u is the cut-off frequency, T is the duration, and Ajp and Bjp are the Fourier 

coefficients which are zero mean and jointly Gaussian random variables.  The expectation of the product of the coefficients 

(i.e., second moments) can be evaluated and denoted as [ ]jp kqE A A , [ ]jp kqE A B , [ ]jp kqE B A  and [ ]jp kqE B B , where , 1,...,j k n=

; , 1,...,p q N=  for A with subscripts; , 2,...,p q N=  for B with subscripts.  The calculation of each of these expectations 

involves four-dimensional integral whose accurate evaluation is computing time consuming. 
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1 2
[ , , ..., ]

T T T

n
=F F F F  denote a vector of size n(2N-1), where T

1 2 2[ , ,..., , ,..., ]j j j jn j jnA A A B B=F  is a (2N-1) vector, and 

the superscript T denote the transpose.  The covariance matrix of F, CFF, is formed by n×n submatrices 
j k

F F
C , , 1,...,j k n= , 

where 
j k

F F
C  is a (2N-1)×(2N-1) matrix given by [14], 
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denotes the expectation; , 1,...,p q N= for A with subscripts; and , 2,...,p q N= for B with subscripts. 

Since the coefficients Ajp and Bkq are zero-mean jointly Gaussian random variables, and the elements in CFF can be evaluated 

based on ( , )
jk

S t , samples of Ajp and Bkq can be simulated from the joint normal distribution and Eq. (4) can be used to obtain 

synthetic seismic ground motions. 

If some elements in X(t), that are included in (Xo(t)) is observed and the simulation of remaining unobserved elements in 

X(t), that are included in (Xu(t)), conditioned on (Xo(t)) is of interest, where Xo(t) and Xu(t) are vectors of size no and (n-no), 

respectively.  Accordingly, F is partitioned into [Fo
T,Fu

T]T, representing the vectors of size no(2N-1) and (n- no)(2N-1), 

respectively.  CFF is then partitioned according to Fo and Fu as, 
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Figure 1. Flow chart of conditional simulation procedure (details and interpretations can be found in [22]) 

The value of
o

F , 
T

1 2
[ , , ..., ]

o

T T T

o n
=f f f f , is calculated considering that Xo(t) can be represented using Eq. (3) (where the 

definition of Fo is similar to F discussed in the previous paragraph).  Based on the properties of zero-mean multivariate normal 
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They can be used to simulate the coefficients A and B (with subscripts) in Fu, so the conditionally simulated ground motions 

Xu(t) can be calculated by using Eq. (4). 

Our experience indicates that non-convergence problem frequently occurs when calculating the inverse matrix of CFoo.  Also, 

the PSD or EPSD of the simulated ground motions deviates from the assigned target PSD which is based fitted EPSD function. 

The cause of non-convergence is partly due to the significant changes in the diagonal elements of CFoo, which is attributed to 

the variation of the EPSD function in frequency.  The deviation to the original target can be explained but may not be suitable 

for engineering application considering that the PSD of a ground motion record is associated with event-to-event variation.  

A modified conditional simulation procedure to avoid the non-convergence in inverting the matrix is proposed and illustrated 

in the flow chart shown in Figure 1.  The modification consists of introducing a new normalization functions T-jj() and 

providing an approach to assign the target EPSD.  The latter reduces potential bias in the EPSD of the simulated records, and 

the former can reduce the condition number of CFoo, so to possibly eliminate the non-convergence problem in inverting CFoo.  

Additional effort in reducing the condition number of the matrix is to eliminate first few terms in Eq. (4); the elimination of 

these terms with very low frequencies do not affect their engineering applications. 

Case-2 shown in Figure 1 emphasizes the event-to-event variability of PSD function, while Case-1 emphasizes that the PSD 

function at considered site for all events are homogeneous. 

NUMERICAL EXAMPLES 

In this section, conditionally simulated bidirectional ground motions are presented.  The layout of the sites is as shown in Figure 

2a.  The observed two horizontal orthogonal record components at Bear Valley #12, Williams Ranch for the Loma Prieta 

earthquake is considered as the conditioning ground motions at Site 1.  The record components extracted from 

http://peer.berkeley.edu/nga/index.html are shown in Figure 2b for Site 1.   

For the numerical analysis, it is considered that the auto-EPSD function can be expressed as, 
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where C0 is a constant; ( )
a

t  is a time varying amplitude; 
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  is the effective ground damping that depends on the soil type; 

f
  is a filter damping; ( )
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  in which cω  is a constant to ensure the consistency of power of ground motions; 
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= + −  is the zero-crossing rate and F0, F1, b1 and b2 are model coefficients [23].  

The parameters for the model shown in Eq. (9) estimated by following the procedure similar to [20,23] are shown in Table 1.  

The ground motions at Sites 2 to 6 conditioned on the observed record components at Site 1 are to be simulated.  For the 

simulation, the wave is considered to travel in the direction from Site 1 to Site 6 with vapp equal to 2000 m/s.  It is considered 

that the lagged coherency for the horizontal ground motion components oriented along the same direction, ( ),
HH

d f , given 

below is applicable [9,21], 
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where d (m) is the distance between two sites; f is frequency in Hz; ( ) ( )( )
1/2

0
1 /

B

f k f f
−

 = + , A = 0.5,  = 1.60×10-4, k = 

3.00×107, f0 =2.5 and B =5.7. 
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The lagged coherency for the record components oriented along the same direction but at different sites are defined by Eq. 

(11), and that for the horizontal orthogonal components, ( ),
HO

d f , is given by, 

 ( )
0 1

,
HO

d f c c f = −  (11) 

where c0 = 0.52 and c1 = 2.70×10-3 [21]. 

The results shown in Figure 2b for Site 2 to 6 by assigning the target PSD function according to Case-1.  Figure 3c indicates 

that as the site moves away from the site of conditional record, the PSD function of the simulated record matches target PSD 

function. 
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Figure 2: Layouts of sites for the conditional simulation of bidirectional horizontal ground motions by considering Case-1, 

and estimated PSD functions and lagged coherencies: a) A set of samples of ground motions; b) Computed PSD density 

function (cm2/(s3rad)) from simulated ground motions; c) Computed lagged coherency from simulated ground motions (|jk|) 

denotes the lagged coherency between site j and k, additional subscripts denotes the orientation of ground motions; (|EWNS|) 

denotes the lagged coherencies in two orthogonal horizontal directions). 

Table 1: Model parameters of EPSD functions for three observed record components. 

Model parameters Loma Prieta E-W Loma Prieta N-S 

ξg 0.60 0.6 

ξf 0.30 0.48 

C0 0.82 0.90 

F0(1/s) 0.87 0.75 

F1(1/s) 5.41 3.73 

b1(1/s) 0.33 0.30 

b2(1/s) 0.60 0.71 

cω 0.82 0.90 

T (s) 78.25 78.25 

 

Rather than considering Case-1, Case-2 is considered and the analyses carried out for the results shown in Figure 2 are repeated.  

The obtained results are shown in Figure 3, indicating that the adequacy of PSD of simulated records. 
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Figure 3. Conditional simulation by considering Case-2, and statistics of the PSD function and lagged coherency: a) A set of 

samples of conditionally simulated ground motions; b) Computed PSD function (cm2/(s3rad)) from simulated ground 

motions; and c) Computed lagged coherency from simulated ground motions (|jk| denotes the lagged coherency between site 

j and k). 

CONCLUSIONS 

A modified conditional simulation procedure is proposed to avoid the non-convergence problem to invert the covariance matrix 

(hence, the breakdown of conditional simulation procedure), and to better match the target PSD function.  Two interpretations 

to assign the target PSD function discussed.  The results show that in Case-1, the PSD functions of simulated records match 

the observed PSD functions for sites near the conditional records and matches the targets for sites away from the observation 

sites.  This is consistent with Bayesian updating procedure.  By considering event-to-event variability in assigning the target 

PSD function, in Case-2, the PSD functions of the simulated records consistently match those of targets. 
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